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Abstract 
 

    This paper presents a unique strategy for maintaining balance in 
dynamically changing Binary Search Trees that has optimal expected behavior at 
worst. Size Balanced Tree is, as the name suggests, a Binary Search Tree (abbr. 
BST) kept balanced by size. It is simple, efficient and versatile in every aspect. It 
is very easy to implement and has a straightforward description and a 
surprisingly simple proof of correctness and runtime. Its runtime matches that of 
the fastest BST known so far. Furthermore, it works much faster than many 
other famous BSTs due to the tendency of a perfect BST in practice. It supports 
not only typical primary operations but also Select and Rank. 
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1 Introduction 

Before presenting Size Balanced Trees it is necessary to explicate Binary Search 
Trees and rotations on BSTs, Left-Rotate and Right-Rotate. 

1.1 Binary Search Tree 

Binary Search Tree is a significant kind of advanced data structures. It supports 
many dynamic-set operations, including Search, Minimum, Maximum, Predecessor, 
Successor, Insert and Delete. It can be used both as a dictionary and as a priority 
queue.  

A BST is an organized binary tree. Every node in a BST contains two children at 
most. The keys for compare in a BST are always stored in such a way as to satisfy the 
binary-search-tree property: 

Let x be a node in a binary search tree. Then the key of x is not less than 
that in left subtree and not larger than that in right subtree. 

For every node t we use the fields of left[t] and right[t] to store two pointers to its 
children. And we define key[t] to mean the value of the node t for compare. In 
addition we add s[t], the size of subtree rooted at t, to keep the number of the nodes in 
that tree. Particularly we call 0 the pointer to an empty tree and s[0]=0.  

1.2 Rotations 

In order to keep a BST balanced (not degenerated to be a chain) we usually 
change the pointer structure through rotations to change the configuration, which is a 
local operation in a search tree that preserves the binary-search-tree property. 

 

Figure1.1: The operation Left-Rotate(x) transforms the configuration of the two 
nodes on the right into the configuration on the left by changing a 
constant number of pointers. The configuration on the left can be 
transformed into the configuration on the right by the inverse 
operation, Right-Rotate(y). 



1.2.1 Pseudocode Of Right-Rotate 

The Right-Rotate assumes that the left child exists. 
 
Right-Rotate (t) 
1 k←left[t] 
2 left[t] ←right[k] 
3 right[k] ←t 
4 s[k] ←s[t] 
5 s[t] ←s[left[t]]+s[right[t]]+1 
6 t←k 

1.2.2 Pseudocode Of Left-Rotate 

The Left-Rotate assumes that the right child exists. 
 
Left-Rotate (t) 
1 k←right[t] 
2 right[t] ←left[k] 
3 left[k] ←t 
4 s[k] ←s[t] 
5 s[t] ←s[left[t]]+s[right[t]]+1 
6 t←k 

2 Size Balanced Tree 

Size Balanced Tree (abbr. SBT) is a kind of Binary Search Trees kept balanced 
by size. It supports many dynamic primary operations in the runtime of O(logn): 
 
Insert(t,v) Inserts a node whose key is v into the SBT rooted at t. 
Delete(t,v) Deletes a node whose key is v from the SBT rooted at t. In the case 

that no such a node in the tree, deletes the node searched at last. 
Find(t,v) Finds the node whose key is v and returns it. 
Rank(t,v) Returns the rank of v in the tree rooted at t. In another word, it is one 

plus the number of the keys which are less than v in that tree. 
Select(t,k) Returns the node which is ranked at the kth position. Apparently it 

includes operations of Get-max and Get-min because Get-min is 
equivalent to Select(t,1) and Get-max is equivalent to Select(t,s[t]) 

Pred(t,v) Returns the node with maximum key which is less than v. 
Succ(t,v) Returns the node with minimum key which is larger than v. 

 



Commonly every node of a SBT contains key, left, right and extra but useful 
updated field: its size, which has been defined in the former introduction. The kernel 
of a SBT is divided into two restrictions on size: 

For every node pointed by t in a SBT, we guarantee that 
Property(a): 

]]][[[]]],[[[]][[ tleftrightstleftleftstrights ≥  

Property(b): 

]]][[[]]],[[[]][[ trightleftstrightrightstlefts ≥  

 
Figure 2.1:The nodes L and R are left and right children of the 

node T. The Subtrees A and B, C and D are left and 
right subtrees of the nodes L and R respectively. 

Correspond to properties (a) and (b), ][][],[&][][],[ LsDsCsRsBsAs ≤≤  

3 Maintain 

Assume that we need to insert a node whose key is v into a BST. Generally we 
use the following procedure to accomplish the mission. 
 
Simple-Insert (t,v) 
1 If t=0 then 
2    t←NEW-NODE(v) 
3 Else 
4    s[t] ←s[t]+1 
5    If v<key[t] then 
6       Simple-Insert(left[t],v) 
7    Else 
8       Simple-Insert(right[t],v) 
 



After the execution of Simple-Insert properties (a) and (b) are probably not 
satisfied. In that case we need to maintain the SBT. 
    The vital operation on a SBT is a unique procedure, Maintain. Maintain(t) is 
used to maintain the SBT rooted at t. The hypothesis that the subtrees of t are SBT is 
applied before the performance. 

Since properties (a) and (b) are symmetrical we only discuss the case that 
restriction (a) is violated in detail. 

Case 1: s[left[left[t]]>s[right[t]] 

In this case that s[A]>s[R] correspond to Figure 2.1 after Insert(left[t],v), we can 
execute the following instructions to repair the SBT: 

(1) First perform Right-Rotate(T). This operation transforms Figure 2.1 into Figure 
3.1; 

 
Figure 3.1: All the nodes are defined the same as in Figure 2.1. 

(2) And then sometimes it occurs that the tree is still not a SBT because s[C]>s[B] 
or s[D]>s[B] by any possibility. So it is necessary to implement Maintain(T). 

(3) In succession the configuration of the right subtree of the node L might be 
changed. Because of the possibility of violating the properties it is needful to 
run Maintain(L) again. 

Case 2: s[right[left[t]]>s[right[t]] 

    In this case that s[B]>s[R] correspond to Figure 3.2 after Insert(left[t],v), the 
maintaining is kind of complicated than that in case 1. We can carry out the following 
operations for repair. 



 

Figure 3.2: All the nodes are defined the same as in Figure 2.1 except 
E, F and B. E and F are the subtrees of the node B. 

(1) First perform Left-Rotate(L). After that Figure 3.2 was transformed to Figure 
3.3 shown below; 

 
Figure 3.3: All the nodes are defined the same as in Figure 3.2. 

(2) And then perform Right-Rotate(T). This performance results in the 
transformation from Figure 3.3 to following Figure 3.4. 



 

Figure 3.4: All the nodes are defined the same as in Figure 3.2. 
(3) After (1) and (2), the tree becomes to be very unpredictable. But luckily, in 

Figure 3.4 subtrees A, E, F and R are still SBTs. So we can perform Maintain(L) 
and Maintain(T) to repair the subtrees of the node B.  

(4) After step (3), those subtrees are already SBTs. But properties (a) and (b) may 
be still violated on the node B. Thus we need perform Maintain(B) again. 

Case 3: s[right[right[t]]>s[left[t]] 

    This case is symmetrical with case 1. 

Case 4: s[left[right[t]]>s[left[t]] 

    This case is symmetrical with case 2. 

3.1 Pseudocode Of Standard Maintain 

   According to the previous analysis it is easy to implement a normal Maintain. 
Maintain (t)  
1 If s[left[left[t]]>s[right[t]] then 
2    Right-Rotate(t) 
3    Maintain(right[t]) 
4    Maintain(t) 
5    Exit 
6 If s[right[left[t]]>s[right[t]] then 
7    Left-Rotate(left[t]) 



8    Right-Rotate(t) 
9    Maintain(left[t]) 
10    Maintain(right[t]) 
11    Maintain(t) 
12    Exit 
13 If s[right[right[t]]>s[left[t]] then 
14    Left-Rotate(t) 
15    Maintain(left[t]) 
16    Maintain(t) 
17    Exit 
18 If s[left[right[t]]>s[left[t]] then 
19    Right-Rotate(right[t]) 
20    Left-Rotate(t) 
21    Maintain(left[t]) 
22    Maintain(right[t]) 
23    Maintain(t) 

3.2 Pseudocode Of Faster And Simpler Maintain 

    The standard pseudocode is a little complicated and slow. Generally we can 
ensure that property (a) or (b) has been satisfied. Therefore we only need to check 
cases 1 and 2 or case 3 and 4 to speed up. In that case we can add a boolean variant, 
flag, to avoid meaningless checking. If flag is false cases 1 and 2 will be checked, 
otherwise cases 3 and 4 will be checked. 
 
Maintain (t,flag) 
1 If flag=false then 
2    If s[left[left[t]]>s[right[t]] then 
3       Right-Rotate(t) 
4    Elseif s[right[left[t]]>s[right[t]] then 
5          Left-Rotate(left[t]) 
6          Right-Rotate(t) 
7       Else exit 
8 Elseif s[right[right[t]]>s[left[t]] then 
9       Left-Rotate(t) 
10    Elseif s[left[right[t]]>s[left[t]] then 
11          Right-Rotate(right[t]) 
12          Left-Rotate(t) 
13       Else exit 
14 Maintain(left[t],false) 
15 Maintain(right[t],true) 
16 Maintain(t,false) 
17 Maintain(t,true) 
 



Why Maintain(left[t],true) and Maintain(right[t],false) are expelled? What is the 
runtime of Maintain? You can find the answers in part 6, analysis. 

4 Insertion 

   The insertion on a SBT is very simple. Here’s the pseudocode of Insert on a SBT. 

4.1 Pseudocode Of Insert 

Insert (t,v) 
1 If t=0 then 
2    t←NEW-NODE(v) 
3 Else 
4    s[t] ←s[t]+1 
5    If v<key[t] then 
6       Simple-Insert(left[t],v) 
7    Else 
8       Simple-Insert(right[t],v) 
9    Maintain(t,v≥key[t]) 
 

5 Deletion 

   I augment the deletion for convenience. If no such a value to delete in a SBT we 
delete the node searched at last and record it. Here’s the standard pseudocode of 
Delete on a SBT. 

5.1 Pseudocode Of Standard Delete 

Delete (t,v) 
1 If s[t]≤2 then 
2    record←key[t] 
3    t←left[t]+right[t] 
4    Exit 
5 s[t] ←s[t]－1 
6 If v=key[t] then 
7    Delete(left[t],v[t]+1) 
8    Key[t] ←record 
9    Maintain(t,true) 
10 Else 



11    If v<key[t] then 
12       Delete(left[t],v) 
13    Else 
14       Delete(right[t],v) 
15    Maintain(t,v<key[t]) 

5.2 Pseudocode Of Faster And Simpler Delete 

    Actually this is the simplest deletion without other functions. Delete(t,v) here is a 
function that returns the value deleted. It can result in a destroyed SBT. But with the 
insertion above, a BST is still kept at the height of O(logn*) where n* is the total 
number of insertions, not the current size! 
Delete (t,v) 
1 s[t] ←s[t]－1 
2 If (v=key[t])or(v<key[t])and(left[t]=0)or(v>key[t])and(right[t]=0) then 
3    Delete ←key[t] 
4    If (left[t]=0)or(right[t]=0) then 
5       t ←left[t]+right[t] 
6    Else 
7       key[t] ←Delete(left[t],v[t]+1) 
8 Else 
9    If v<key[t] then 
10       Delete(left[t],v) 
11    Else 
12       Delete(right[t],v) 

6 Analysis 

    Obviously Maintain is a recursive procedure. Maybe the question about whether 
it can stop or not has appeared in your mind. Not to worry: it has been proved that the 
amortized runtime for Maintain is only O(1). 

6.1 Analysis Of Height 

    Let f[h] be the minimum number of the nodes of a SBT whose height is h. We 
have 
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6.1.1 Proof 

(1) It is easy to work out that 1]0[ =f and 2]1[ =f . 

(2) First of all, )1(1]2[]1[][ >+−+−≥ hhfhfhf . For each h>1, let’s assume that 

t points to a SBT whose height is h. And then this SBT contains a subtree at 
the height of h-1. It doesn’t matter to suppose it as the left subtree. According 

to the previous definition of ][hf , we have that ]1[ . And there 

is an h-2-tall subtree of the left subtree. In another word there is a subtree 

whose size is at least ]2[
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On the other hand, )1(1]2[]1[][ >+−+−≤ hhfhfhf . We can construct a 

SBT with exact  node(s) and its height is h. We call this kind of SBT 

tree[h]. 
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      Hence that )1(1]2[]1[][ >+−+−= hhfhfhf  is obtained by summing up 

two upper aspects. 

6.1.2 The Worst Height 

    In fact  is exponential function. Its precise value can be calculated from the 

recursion. 
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Some usual values of f[h] 
H 13 15 17 19 21 23 25 27 29 31 

F[h] 986 2583 6764 17710 46367 121392 317810 832039 2178308 5702886

Lemma 

    The worst height of an n-node SBT is the maximum h subjected to . nhf ≤][

 
    Assume that maxh is the worst height of a SBT at the size of n. According to the  
lemma above, we have 
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    Now it is clear that the height of a SBT is O(logn). 

6.2 Analysis Of Maintain 

    We can easily prove that Maintain works quite efficiently using the previous 
conclusions. 
    There is a very important value to estimate how well a BST is, the average of all 
nodes’ depths. It is the quotient obtained by SD, the sum of the depths of all nodes, 
dividing n. Generally the less it is, the better a BST is. Because of the constant n, SD 
is expected to be as small as possible. 
    Now we need to concentrate on SD. Its significance is the ability to restrict the 
times of Maintain. Recalling the conditions to perform rotations in Maintain it is 
surprising that SD always decreases after rotations. 
   In case 1, for example, comparing Figure 2.1 with Figure 3.1, SD increases a 
negative value, s[right[t]]-s[left[left[t]]. 
   And for instance comparing Figure 3.2 to Figure 3.4, SD increases a value less 
than -1, s[right[t]]-s[right[left[t]]]-1. 
   Due to the height of O(logn) SD is always kept O(nlogn). And SD just increases 
O(logn) after an insertion on a SBT. Therefore 
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  where T is the number of Maintains running rotations. 
The total number of Maintains is T plus the number of Maintains without rotations. 
Since the latter is O(nlogn)+O(T), the amortized runtime for Maintain is 
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6.3 Analysis Of Each Operation 

Now that the height of SBT is O(logn) and Maintain is O(1), the runtime for all 
primary operations are O(logn). 
 

6.4 Analysis Of Faster And Simpler Delete 

We call the statement P(n*) that a BST with the faster and simpler Delete and n* 
standard Inserts is at the height of O(logn*). We prove P(n*) is true for arbitrary 
positive integer n* by mathematical induction. 

6.4.1 Proof 

Here I just give a rough proof. 
Assume that a node t is checked by Maintain(t,false), we have 
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Therefore if all nodes on the path from a node to the root are checked by 
Maintain the depth of this node is O(logn). 

(1) For n*=1, P(n*) is true apparently; 
(2) Assume that P(n*) is true for n*<k. For n*=k, after the last consecutive 

insertions, the nodes checked by Maintain must be connected together to form 
a tree. For every leaf of this tree, the subtree pointed by it does not be 
changed by Maintain. So the depths of the nodes in this subtree is not larger 
than O(logn*)+O(logn)=O(logn*) 

(3) Therefore P(n*) is true for n*=1,2,3… 
 

In this way the amortized runtime of Maintain is still O(1). 

6.5 Analysis Of Faster And Simpler Maintain 

Here’s the discussion about why Maintain(left[t],true) and Maintain(right[t],false) 
can be expelled. 

In case 1 in Figure 3.2 we have 
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Thus Maintain(right[t],false),correspond to Maintain(T,false) in Figure 3.1, can be 
expelled. And Maintain(left[t],true) is unnecessary apparently. 

In case 2 in Figure 3.2 we have 
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These inequations also mean that the size of subtrees of E is less than s[A] and the 
size of subtrees of F is less than s[R]. Thus Maintain(right[t],false) and 
Maintain(left[t],true) can be expelled. 

7 Advantage 

7.1 How Fast A SBT Runs 

7.1.1 Typical Problem 

Write a program to perform n operations given from the input. They are 
 
1) Insert a given number into the set; 
2) Delete a given number from the set; 
3) Return if a given number is in the set; 
4) Return the rank of a given number in the set; 
5) Return the kth number in the set; 
6) Return the previous number of a given number in the set; 
7) Return the succeeding number of a given number in the set. 

 

 
 



7.1.2 Statistic 
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Perform 2,000,000 operations of 66% insertion
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Perform 2,000,000 operations of 20% insertion
,10% deletion and 60% query with random values

SBT 3.39
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    In practice SBTs work excellently. From the upper charts we see that SBTs run 
much faster than other balanced BSTs while the data are random. Moreover the more 
ordered the data are, the unexpectedly faster SBTs run. It takes only 2 seconds to 
insert 2,000,000 ordered nodes into a SBT. 

7.2 How Efficiently A SBT Works 

     The average of all nodes’ depths nonincreases while Maintain is running. For 
this reason a SBT always tends to be a perfect balanced BST. 

Insert 2,000,000 nodes with random values 

Type SBT AVL Treap Randomized 
BST Splay Perfect 

BST 
Average 
Depth 19.2415 19.3285 26.5062 25.5303 37.1953 18.9514 

Height 24 24 50 53 78 20 
Times of 
Rotation 1568017 1395900 3993887 3997477 25151532 ? 

 
Insert 2,000,000 nodes with ordered values 

Type SBT AVL Treap Randomized 
BST Splay Perfect 

BST 
Average 
Depth 18.9514 18.9514 25.6528 26.2860 999999.5 18.9514 

Height 20 20 51 53 1999999 20 
Times of 
Rotation 1999979 1999979 1999985 1999991 0 ? 

 



7.3 How Easy Debugging Is 

At first we can merely implement a simple BST to guarantee that the main of the 
code is correct. After that we add Maintain into the Insert and then debug. If an error 
is checked out we only need to debug Maintain. Moreover a SBT doesn’t base on 
random so debugging is much stabler comparing to Treap, Skip list, Randomized BST 
and so on. 

7.4 How Simple A SBT Is 

A SBT is almost the same as a simple BST. Removing the only additional 
Maintain in Insert the former turns to be the latter. And Maintain is quite simple too. 

7.5 How Compact A SBT Is 

    Lots of balanced BSTs such as SBT, AVL, Treap, Red-Black BST and so on need 
extra fields to be kept balanced. But many of them are useless like height, random 
factor and color. On the contrary a SBT contains a useful extra field, size. In 
possession of it we can augment BSTs to support selection and ranking. 

7.6 How Versatile A SBT Is 

    Now that the height of a SBT is O(logn), we can perform Select in O(logn) in the 
worst case. But Splay can’t support it very well because the height can be degenerated 
to be O(n) easily, which is exposed by the char above. 
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